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Mathematical Framework

Model for a rotating Bose-Einstein Condensate:
the Gross-Pitaevskii model

The state of the system is obtained minimizing the Gross-Pitaevskii energy
functional:

EGP[Ψ] =

∫
R2

dr

{
1

2
|∇Ψ|2 + V (r)|Ψ|2 − ΩrotΨ

∗LΨ +
1

ε2
|Ψ|4

}
=

=

∫
R2

dr

{
1

2
|(∇− iArot) Ψ|2 +

(
V (r)− 1

2
Ω2
rotr

2

)
|Ψ|2 +

1

ε2
|Ψ|4

}

V = kr s , s > 2 is the trapping potential;

L = −i∂θ angular momentum;

Arot = Ωrotr⊥ vector potential;

competition between V and the centrifugal term, different cases if V
quadratic or more than quadratic
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Increasing Speed

What happens if you increase the rotating speed Ωrot?

formation of quantized vortices in the condensate (related to
superfluidity properties);

different shape of the condensate
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Increasing Speed First critical speed

First regime: Ωrot � ε−
s−2
s+2

in this regime the mass distribution of the condensate is well
represented by the minimizer of a Thomas-Fermi functional and thus
it is essentially supported around the origin;

in particular while Ωrot � ε
4

s+2 | log ε| the minimizer has
no vortices at all;

when Ωrot pass a critical value Ω1 ∼ ε
4

s+2 | log ε| a first vortex in the

origin is nucleated and when Ωrot � ε
4

s+2 | log ε| the vortices are
uniformly distributed in the whole plane R2 [first phase
transition/first critical speed]
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Increasing Speed Second critical speed

Second regime: Ωrot ∼ ε−
s−2
s+2

−→

In this regime the Thomas-Fermi minimizer digs a hole in the origin, and
this has the effect that the mass distribution of the condensate is
exponentially small around the origin and becomes essentially supported in
an annulus far from the origin; this corresponds to a second critical speed

for the condensate of order Ω2 ∼ ε−
s−2
s+2
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Increasing Speed Second critical speed

Second regime: Ωrot ∼ ε−
s−2
s+2

Scaling: the condensate becomes essentially supported in an annulus
which radius goes to infinity; we rescale dimension such that the annulus
remains at a fixed distance from the origin - that we choose to be 1

EGP
Ω [ψ] =

∫
R2

dx

{
1

2
|(∇− iAΩ)ψ|2 + Ω2W (x)|ψ|2 +

1

ε2
|ψ|4

}

W (x) =
xs − 1

s
− x2 − 1

2
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Increasing Speed Third critical speed

Third regime: Ω� ε−1

while ε−1 � Ω� ε−4 the mass distribution of the condensate is still
close to the minimizer of another Thomas-Fermi functional,

supported in an annulus of width ∼ (εΩ)−
2
3 going to 0 as ε→ 0;

moreover as long as Ω� ε−4 the minimizer has still vortices
distributed in the whole R2;

as soon as Ω pass a critical value Ω3 ∼ ε−4 the vortices in the
annulus disappear: third phase transition, minimizer is in the so-called
Giant Vortex state

Dimonte Giant Vortex June 2015 8 / 13



Increasing Speed Third critical speed

Third regime: Ω� ε−1

while ε−1 � Ω� ε−4 the mass distribution of the condensate is still
close to the minimizer of another Thomas-Fermi functional,

supported in an annulus of width ∼ (εΩ)−
2
3 going to 0 as ε→ 0;

moreover as long as Ω� ε−4 the minimizer has still vortices
distributed in the whole R2;

as soon as Ω pass a critical value Ω3 ∼ ε−4 the vortices in the
annulus disappear: third phase transition, minimizer is in the so-called
Giant Vortex state

Dimonte Giant Vortex June 2015 8 / 13



Increasing Speed Third critical speed

Third regime: Ω� ε−1

while ε−1 � Ω� ε−4 the mass distribution of the condensate is still
close to the minimizer of another Thomas-Fermi functional,

supported in an annulus of width ∼ (εΩ)−
2
3 going to 0 as ε→ 0;

moreover as long as Ω� ε−4 the minimizer has still vortices
distributed in the whole R2;

as soon as Ω pass a critical value Ω3 ∼ ε−4 the vortices in the
annulus disappear: third phase transition, minimizer is in the so-called
Giant Vortex state

Dimonte Giant Vortex June 2015 8 / 13



Increasing Speed Third critical speed

For the first two critical speed the exact values are known:

Ω1 =
π

2

(
2k(s + 2)

πs

) s
s+2

ε
4

s+2 | log ε|,

Ω2 = (2k)
s

s+2

[
4(s + 2)

π(s − 2)

] s−2
2(s+2)

ε−
s−2
s+2 ,

Theorem (M. Correggi, N.Rougerie, F. Pinsker, J. Yngvason, 2012)

It exists a constant Ωc such that if Ω is of the form Ω0
ε4 in the rescaled

variables with Ω0 fixed as ε→ 0 and Ω0 > Ωc then no minimizer has a
zero in the annulus. More precisely, exists a real radial strictly positive
function f such that in the annulus we have that∣∣ψGP(x)

∣∣ = f (x) (1 + o (1))

Ωc =?
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Upper bound for Ω3

Giant Vortex phase

When Ω & ε−4 any minimizer of the Gross-Pitaevskii energy functional
behaves like a real radial function that doesn’t vanish in the annulus times
a phase factor of degree α around the origin, namely

ψGP(x) ' f (x)e iαθ

It is then natural to define the Giant Vortex energy functional as

Egvα [f ] = EGP
Ω [fe iαθ]

EGP
Ω ≤ E gv

α ∀α =⇒ EGP
Ω ≤ inf

α
E gv
α = E gv

α∗

α∗ = Ω
(
1 +O(ε4)

)
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Upper bound for Ω3

Once you find an upper bound for the energy you may be wonder whether
it is possible to match it with a corresponding lower bound or not; here
things get tricky

. Using the critical value α∗ found before and trying to
get the lower bound a critical value for Ω0 naturally arise

Main result (M. Correggi, D. D., 2015)

If Ω0 ≥ Ωc, with Ωc explicit, then

EGP = E gv
α∗

(
1 +O

(
ε4
))

and moreover no minimizer of the Gross-Pitaevskii energy functional has a
zero in the annulus
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Conclusions and perspectives

while Ω0 ≥ Ωc there are no vortices in the annulus so the phase
transition actually happened and this means that Ω3 ≤ Ωc

ε4 ;

it is still an open problem to show that the value we just found is in
fact the real critical speed for the condensate, i. e. that in fact
Ω3 = Ωc

ε4 , and to prove this means to show that for any Ω < Ωc

ε4 there
are vortices inside the annulus; the minimality argument for α∗ gives
us hope that the value we found is the critical one
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Conclusions and perspectives

Thanks for the attention!
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