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Mathematical Framework

Model for a rotating Bose-Einstein Condensate:
the Gross-Pitaevskii model

The state of the system is obtained minimizing the Gross-Pitaevskii energy
functional:
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o V = kr®, s > 2 is the trapping potential;
o L = —i0y angular momentum;

o A.i = Quotrt vector potential;
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Mathematical Framework

Model for a rotating Bose-Einstein Condensate:
the Gross-Pitaevskii model

The state of the system is obtained minimizing the Gross-Pitaevskii energy

functional:

EGP[\U]:/ dr{;|V\IJ|2+V(r)|\ll|2—Qrot\U*L\Il+€12|\U|4}:
R2
1 ,
:/R2dr{2|(V—/Arot)\U|2+(V() thr)\w\ + = || }

o V = kr®, s > 2 is the trapping potential;

o L = —i0y angular momentum;

o A.i = Quotrt vector potential;

@ competition between V' and the centrifugal term, different cases if V
quadratic or more than quadratic
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Increasing Speed

What happens if you increase the rotating speed Q,t?
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Increasing Speed

What happens if you increase the rotating speed Q;qt:

e formation of quantized vortices in the condensate (related to
superfluidity properties);

Dimonte Giant Vortex June 2015

4/13



Increasing Speed

What happens if you increase the rotating speed Q;qt:

e formation of quantized vortices in the condensate (related to
superfluidity properties);
o different shape of the condensate

o[o]v
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Increasing Speed First critical speed

First regime: |, < e

@ in this regime the mass distribution of the condensate is well
represented by the minimizer of a Thomas-Fermi functional and thus
it is essentially supported around the origin;
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@ in particular while Q. < €572 log | the minimizer has
no vortices at all;
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Increasing Speed First critical speed

. R _5=2
First regime: [, < & 52

@ in this regime the mass distribution of the condensate is well
represented by the minimizer of a Thomas-Fermi functional and thus
it is essentially supported around the origin;

@ in particular while Q. < €572 log | the minimizer has
no vortices at all;

a4 . .
@ when Q. pass a critical value Q1 ~ e5+2| loge| a first vortex in the

4
origin is nucleated and when Q. > £5+2| log €| the vortices are
uniformly distributed in the whole plane R? [first phase
transition /first critical speed|]
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Increasing Speed Second critical speed

s—2

Second regime: [Q,; ~ & 52

In this regime the Thomas-Fermi minimizer digs a hole in the origin, and
this has the effect that the mass distribution of the condensate is
exponentially small around the origin and becomes essentially supported in

an annulus far from the origin; this corresponds to a second critical speed
s—2

for the condensate of order €2 ~ &~ s+2

R 67T



Increasing Speed Second critical speed

s—2

Second regime: [Q,; ~ & 52

Scaling: the condensate becomes essentially supported in an annulus
which radius goes to infinity; we rescale dimension such that the annulus
remains at a fixed distance from the origin - that we choose to be 1

5710 = [ ax {3107 ma) o + Q2w + St}

TR



Increasing Speed Second critical speed

Second regime: |Q ~ ¢!

Scaling: the condensate becomes essentially supported in an annulus
which radius goes to infinity; we rescale dimension such that the annulus
remains at a fixed distance from the origin - that we choose to be 1

7101 = [ ax {319~ iha) ol + EWEIUE + S}
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Ul
Third regime: |Q > ¢!

o while e71 <« Q <« 7% the mass distribution of the condensate is still
close to the minimizer of another Thomas-Fermi functional,
2
supported in an annulus of width ~ (¢Q) 3 going to 0 as ¢ — 0;
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Ul
Third regime: |Q > ¢!

o while e71 <« Q <« 7% the mass distribution of the condensate is still
close to the minimizer of another Thomas-Fermi functional,

supported in an annulus of width ~ (59)7% going to 0 as ¢ — 0;

@ moreover as long as Q < £~* the minimizer has still vortices
distributed in the whole R?:

@ as soon as ) pass a critical value Q3 ~ ¢~# the vortices in the
annulus disappear: third phase transition, minimizer is in the so-called
Giant Vortex state
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Increasing Speed Third critical speed

For the first two critical speed the exact values are known:

2k(s +2)\ 52
Ql — E (ﬂ) 6512| |0g5|,
2 TS

4(s + 2)] AFD 52

Qp = (2k)72 [m
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Increasing Speed Third critical speed

For the first two critical speed the exact values are known:

Q — E <2k(5+2)
2 TS

2

) st
(s+2) 2512) _s=2
m £ s+27

Qp = (2k)72 [

Theorem (M. Correggi, N.Rougerie, F. Pinsker, J. Yngvason, 2012)

It exists a constant Q. such that if € is of the form % in the rescaled
variables with Qg fixed as € — 0 and € > Q. then no minimizer has a
zero in the annulus. More precisely, exists a real radial strictly positive
function f such that in the annulus we have that

[0S (x)] = F(x) (1 +0(1))
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Increasing Speed Third critical speed

For the first two critical speed the exact values are known:

Q — E <2k(5+2)
2 TS

2

) st
(s+2) 2512) _s=2
m £ s+27

Qp = (2k)72 [

Theorem (M. Correggi, N.Rougerie, F. Pinsker, J. Yngvason, 2012)

It exists a constant Q. such that if € is of the form % in the rescaled
variables with Qg fixed as € — 0 and € > Q. then no minimizer has a
zero in the annulus. More precisely, exists a real radial strictly positive
function f such that in the annulus we have that

[0S (x)] = F(x) (1 +0(1))

Q. =7
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Upper bound for Q3

Giant Vortex phase

When Q > ¢~* any minimizer of the Gross-Pitaevskii energy functional
behaves like a real radial function that doesn’t vanish in the annulus times
a phase factor of degree « around the origin, namely

PP (x) = F(x)e
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Giant Vortex phase

When Q > ¢~* any minimizer of the Gross-Pitaevskii energy functional
behaves like a real radial function that doesn’t vanish in the annulus times
a phase factor of degree « around the origin, namely
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It is then natural to define the Giant Vortex energy functional as

E8VIF] = 5" [fe' ]
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Upper bound for Q3

Giant Vortex phase

When Q > ¢~* any minimizer of the Gross-Pitaevskii energy functional
behaves like a real radial function that doesn’t vanish in the annulus times
a phase factor of degree « around the origin, namely

¢GP(X) ~ f(X)eiae
It is then natural to define the Giant Vortex energy functional as

E8VIF] = 5" [fe' ]

EST < E®Y Va = E§Y <infEE" = E&¥
(03

o =Q (14 0(eY)
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Upper bound for Q3

Once you find an upper bound for the energy you may be wonder whether
it is possible to match it with a corresponding lower bound or not; here
things get tricky
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Upper bound for Q3

Once you find an upper bound for the energy you may be wonder whether
it is possible to match it with a corresponding lower bound or not; here
things get tricky. Using the critical value a, found before and trying to
get the lower bound a critical value for Qg naturally arise

Main result (M. Correggi, D. D., 2015)
If Q¢ > Q, with Q. explicit, then

ESP = E& (1+ 0 (%)

and moreover no minimizer of the Gross-Pitaevskii energy functional has a
zero in the annulus
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Conclusions and perspectives

o while Qp > . there are no vortices in the annulus so the phase
transition actually happened and this means that Q3 < %;
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Conclusions and perspectives

o while Qp > . there are no vortices in the annulus so the phase
transition actually happened and this means that Q3 < %;

@ it is still an open problem to show that the value we just found is in
fact the real critical speed for the condensate, i. e. that in fact
Q3 = % and to prove this means to show that for any Q < % there
are vortices inside the annulus; the minimality argument for o, gives
us hope that the value we found is the critical one
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Conclusions and perspectives

Thanks for the attention!
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