ENERGY ASYMPTOTICS FOR A FAST ROTATING BOSE-EINSTEIN CONDENSATE

AMPQ Seminar

Daniele Dimonte, SISSA 28th March 2017

this presentation is available on daniele.dimonte.it based on a joint work with Michele Correggi

Table of Content

1. Mathematical Framework

Model for a rotating BEC: The Gross-Pitaevskii model

2. Increasing the Rotational Speed

- Slow Rotation
 - Fast Rotation
 - Ultrarapid Rotation
 - Giant Vortex state

3. The third critical speed

- Sketch of the proof
- An explicit value
- Conclusion and perspectives

In the case of an N-body particle system, when $N \to +\infty$, if we assume condensation the state of the system can be described minimizing the following Gross-Pitaevskii energy functional:

$$\mathcal{E}_{\omega}^{\text{phys}}[\Psi] = \int_{\mathbb{R}^{2}} d\mathbf{r} \left\{ \frac{1}{2} |\nabla \Psi|^{2} - \omega \Psi^{*} L_{z} \Psi + \frac{1}{\varepsilon^{2}} V(\mathbf{r}) |\Psi|^{2} + \frac{1}{\varepsilon^{2}} |\Psi|^{4} \right\}$$

$$E_{\omega}^{\text{phys}} = \inf_{\|\Psi\|_{2}^{2}=1} \mathcal{E}_{\omega}^{\text{phys}}[\Psi] = \mathcal{E}_{\omega}^{\text{phys}}[\Psi_{\omega}^{\text{phys}}]$$

In the case of an *N*-body particle system, when $N \to +\infty$, if we assume condensation the state of the system can be described minimizing the following Gross-Pitaevskii energy functional:

$$\mathcal{E}_{\omega}^{\text{phys}}[\Psi] = \int_{\mathbb{R}^{2}} d\mathbf{r} \left\{ \frac{1}{2} |\nabla \Psi|^{2} - \omega \Psi^{*} L_{z} \Psi + \frac{1}{\varepsilon^{2}} V(\mathbf{r}) |\Psi|^{2} + \frac{1}{\varepsilon^{2}} |\Psi|^{4} \right\}$$

$$E_{\omega}^{\text{phys}} = \inf_{\|\Psi\|_{2}^{2}=1} \mathcal{E}_{\omega}^{\text{phys}}[\Psi] = \mathcal{E}_{\omega}^{\text{phys}}[\Psi_{\omega}^{\text{phys}}]$$

- $V(\mathbf{r}) = r^s$, s > 2 is the trapping potential
- $L_z = -i (\mathbf{r} \times \nabla)_z = -i \partial_\theta$ angular momentum
- ullet ω is the rotational speed of the condensate

In the case of an *N*-body particle system, when $N \to +\infty$, if we assume condensation the state of the system can be described minimizing the following Gross-Pitaevskii energy functional:

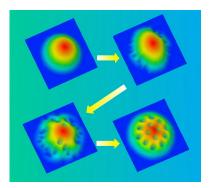
$$\mathcal{E}_{\omega}^{\text{phys}}[\Psi] = \int_{\mathbb{R}^{2}} d\mathbf{r} \left\{ \frac{1}{2} |\nabla \Psi|^{2} - \omega \Psi^{*} L_{z} \Psi + \frac{1}{\varepsilon^{2}} V(\mathbf{r}) |\Psi|^{2} + \frac{1}{\varepsilon^{2}} |\Psi|^{4} \right\}$$

$$E_{\omega}^{\text{phys}} = \inf_{\|\Psi\|_{2}^{2}=1} \mathcal{E}_{\omega}^{\text{phys}}[\Psi] = \mathcal{E}_{\omega}^{\text{phys}}[\Psi_{\omega}^{\text{phys}}]$$

- $V(\mathbf{r}) = r^s$, s > 2 is the trapping potential
- $L_z = -i (\mathbf{r} \times \nabla)_z = -i \partial_\theta$ angular momentum
- ullet ω is the rotational speed of the condensate
- ε^{-2} in front of the quartic term is proportional to the 2-body scattering length for the interacting potential
- asymptotic $\varepsilon \to 0$ (corresponding to the Thomas-Fermi regime)
- asymptotic for ω as ε goes to 0

Increasing the rotational speed ω we can observe different behaviors:

- formation of quantized vortices in the condensate (related to superfluidity properties): change of the phase of $\Psi_{\omega}^{\rm phys}$
- \bullet different shapes of the condensate: change of the modulus of $\Psi^{\rm phys}_\omega$

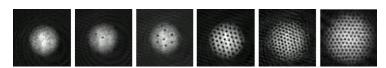


 ψ has a vortex in x_0 if around the point $\psi(x) \simeq e^{in\theta(x)} f(|x-x_0|)$

Numerics by K. Kasamatsu, M. Tsubota, M. Ueda

First regime: $|\omega \ll \varepsilon^{-1}|$

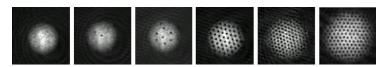
- When $\omega = 0$ the minimizer can be taken as a strictly positive function (up to a U(1) symmetry) and it's close to the minimizer of a Thomas-Fermi functional; its support is concentrated in an area around a ball centered in zero, and we can only see the effect of the trapping potential



Experiments from the Cornell Group, Jila research center

First regime: $\omega \ll \varepsilon^{-1}$

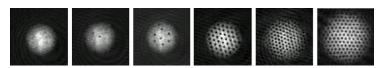
- When $\omega = 0$ the minimizer can be taken as a strictly positive function (up to a U(1) symmetry) and it's close to the minimizer of a Thomas-Fermi functional; its support is concentrated in an area around a ball centered in zero, and we can only see the effect of the trapping potential
- For small rotations $\omega < \omega_{c_1} = \omega_1 |\log \varepsilon|$ we can observe no effect on the state of the system; in particular $E_{\omega}^{\rm phys} = E_{0}^{\rm phys}$ and $\Psi_{\omega}^{\rm phys} = \Psi_{\rm o}^{\rm phys}$ (Aftalion, Jerrard, Royo-Letelier, [AJR11])



Experiments from the Cornell Group, Jila research center

First regime: $\omega \ll \varepsilon^{-1}$

- As soon as $\omega \geq \omega_{c_1}$ vortices start to appear in the bulk of the condensate (Ignat, Millot, [IM06]) showing the contribute from the kinetic term
- As the second vortex appear the rotational symmetry is broken in the minimizer and is never restored, even for higher rotational speeds
- Increasing the rotational speed even more, for $\omega \gg |\log \varepsilon|$ the vortices become distributed uniformly (Correggi, Yngvason, [CY08])



Experiments from the Cornell Group, Jila research center

Second regime: $\omega \sim \varepsilon^{-1}$

- While $\omega \leq \omega_{c_2} = \omega_2 \varepsilon^{-1}$ the condensate is still contained in a ball around zero and has vortices uniformly distributed in its bulk
- When $\omega = \omega_0 \varepsilon^{-1}$ the Thomas-Fermi functional digs a hole in the origin, therefore the $\Psi^{\rm phys}_{\omega}$ becomes exponentially small in ε in a region close to the origin (Correggi, Pinsker, Rougerie, Yngvason, [CPRY12])

Numerics from Fetter, Jackson, Stringari [FJS05]

$$\mathcal{E}_{\omega}^{\mathrm{phys}}[\Psi] = \int_{\mathbb{R}^2} d\mathbf{r} \left\{ \frac{1}{2} \left| (\mathbf{\nabla} - i\mathbf{A}_{\mathrm{rot}}) \Psi \right|^2 + \frac{1}{\varepsilon^2} \left[r^s - \frac{1}{2} \varepsilon^2 \omega^2 r^2 + |\Psi|^2 \right] |\Psi|^2 \right\}$$
$$\mathbf{A}_{\mathrm{rot}} = \omega \mathbf{r}^{\perp} = \omega \left(-r_2, r_1 \right)$$

When $\omega \gg \varepsilon^{-1}$ the support of the Thomas-Fermi profile becomes concentrated in an annulus of mean radius equal to the minimum point of $r^{s} - \frac{1}{2}\varepsilon^{2}\omega^{2}r^{2}$, which is going to infinity as ε goes to zero Here the hypotheses of s > 2 becomes crucial, and if s = 2 as soon as $\omega \gg \varepsilon^{-1}$ the energy becomes unbounded from below

$$\begin{split} \mathcal{E}_{\omega}^{\mathrm{phys}}[\boldsymbol{\Psi}] &= \int_{\mathbb{R}^2} \mathrm{d}\mathbf{r} \left\{ \frac{1}{2} \left| \left(\boldsymbol{\nabla} - i \boldsymbol{\mathsf{A}}_{\mathrm{rot}} \right) \boldsymbol{\Psi} \right|^2 + \frac{1}{\varepsilon^2} \left[r^s - \frac{1}{2} \varepsilon^2 \omega^2 r^2 + |\boldsymbol{\Psi}|^2 \right] |\boldsymbol{\Psi}|^2 \right\} \\ \boldsymbol{\mathsf{A}}_{\mathrm{rot}} &= \omega \mathbf{r}^\perp = \omega \left(-r_2, r_1 \right) \end{split}$$

When $\omega\gg\varepsilon^{-1}$ the support of the Thomas-Fermi profile becomes concentrated in an annulus of mean radius equal to the minimum point of $r^s-\frac{1}{2}\varepsilon^2\omega^2r^2$

We rescale the radius around this minimum point in such a way that

$$\begin{split} \boxed{ \mathcal{E}_{\Omega}^{\mathrm{GP}}[\psi] = \int_{\mathbb{R}^2} \mathrm{d}\mathbf{x} \left\{ \frac{1}{2} \left| \left(\boldsymbol{\nabla} - i \mathbf{A}_{\Omega} \right) \psi \right|^2 + \Omega^2 W(x) |\psi|^2 + \frac{1}{\varepsilon^2} |\psi|^4 \right\} } \\ \mathbf{A}_{\Omega} = \Omega \mathbf{x}^{\perp}, \quad W(x) = \frac{x^s - 1}{s} - \frac{x^2 - 1}{2}, \\ \mathbf{E}_{\Omega}^{\mathrm{GP}} = \inf_{\|\psi\|_2^2 = 1} \mathcal{E}_{\Omega}^{\mathrm{GP}}[\psi] = \mathcal{E}_{\Omega}^{\mathrm{GP}}[\psi_{\Omega}^{\mathrm{GP}}] \end{split}$$

$$\mathcal{E}_{\omega}^{\text{phys}}[\Psi] = \int_{\mathbb{R}^2} d\mathbf{r} \left\{ \frac{1}{2} \left| (\nabla - i \mathbf{A}_{\text{rot}}) \Psi \right|^2 + \frac{1}{\varepsilon^2} \left[r^s - \frac{1}{2} \varepsilon^2 \omega^2 r^2 + |\Psi|^2 \right] |\Psi|^2 \right\}$$
$$\mathbf{A}_{\text{rot}} = \omega \mathbf{r}^{\perp} = \omega \left(-r_2, r_1 \right)$$

When $\omega \gg \varepsilon^{-1}$ the support of the Thomas-Fermi profile becomes concentrated in an annulus of mean radius equal to the minimum point of $r^s - \frac{1}{2}\varepsilon^2\omega^2r^2$

We rescale the radius around this minimum point in such a way that

$$\mathcal{E}_{\Omega}^{GP}[\psi] = \int_{\mathbb{R}^2} d\mathbf{x} \left\{ \frac{1}{2} \left| (\nabla - i \mathbf{A}_{\Omega}) \psi \right|^2 + \Omega^2 W(\mathbf{x}) |\psi|^2 + \frac{1}{\varepsilon^2} |\psi|^4 \right\}$$

- The potential W is positive and has one only minimum in x = 1, W(1) = 0
- ullet Ω is the rescaled rotational speed
- When $\omega \sim \varepsilon^{-1}$ also $\Omega \sim \varepsilon^{-1}$

Third regime: $\Omega \gg \varepsilon^{-1}$

$$\Omega \gg \varepsilon^{-1}$$

• When $\Omega_{c_2} \leq \Omega \ll \varepsilon^{-4}$ it was proven in [CPRY12] that $E_{\Omega}^{\text{GP}} = E_{\Omega}^{\text{TF}} + \mathcal{O}\left(\Omega | \log(\varepsilon^4 \Omega)\right)$, where E_{Ω}^{TF} is the ground state of

$$\mathcal{E}_{\Omega}^{\mathrm{TF}}[\rho] = \int_{\mathbb{R}^2} \mathrm{d}\mathbf{x} \left[\Omega^2 W(x) + \frac{1}{\varepsilon^2} \rho \right] \rho$$

- Using the energy asymptotic it was possible to show also that the profile of the minimizer is exponentially small in ε outside a ring of radius 1 and of width $(\varepsilon\Omega)^{-\frac{2}{3}} = o(1)$
- Moreover, using the same asymptotic it is also possible to prove that the distribution of vorticity is uniform for $\Omega_{co} \leq \Omega \ll \varepsilon^{-4}$

- When $\Omega = \Omega_0 \varepsilon^{-4}$ the size of a single vortex becomes comparable to the width of the annulus where $\psi_0^{\rm GP}$ is essentially supported
- Indeed below the threshold the size of a single vortex, that is the size of the region where $|\psi_{\Omega}^{\mathrm{GP}}|^2\sim 0$, has a core radius ρ which is fixed by the energy to be of order $\rho\sim\Omega_0^{-\frac{1}{3}}\varepsilon^2$
- At the same time the width of the annulus is $(\varepsilon\Omega)^{-\frac{2}{3}}\sim\Omega_0^{-\frac{2}{3}}\varepsilon^2$
- For Ω_0 big enough the vortices don't fit in the annulus anymore and are expelled from the bulk of the condensate (**Giant Vortex state**)

Theorem (Correggi, Pinsker, Rougerie, Yngvason, [CPRY12])

If Ω_0 is big enough then $\psi_0^{\rm GP}$ has no zeroes in the annulus, and therefore there are no vortices in the annulus; more precisely

$$\left|\psi_{\Omega}^{\mathrm{GP}}(\mathbf{x})
ight|=rac{1}{\sqrt{2\piarepsilon}}g_{\mathrm{gv}}(x)\left(1+o\left(1
ight)
ight),\;\;g_{\mathrm{gv}}>0$$

Numerics from Fetter, Jackson, Stringari, [FJS]

An essential tool in [CPRY12] was proving the approximation of the energy in terms of a Giant Vortex energy; assuming $\Omega_0\gg 1$

$$\begin{split} E_{\Omega}^{\mathrm{GP}} &= \frac{E^{\mathrm{gv}}}{\varepsilon^4} + \mathcal{O}\left(|\log \varepsilon|^{\frac{9}{2}}\right) \\ \mathcal{E}^{\mathrm{gv}}[g] &= \int_{\mathbb{R}} \mathrm{dy}\left\{\frac{1}{2}\left|\nabla g\right| + \frac{1}{2}\Omega_0^2(s+2)\mathrm{y}^2g^2 + \frac{1}{2\pi}g^4\right\} \\ &= \inf_{\|g\|_2^2} \mathcal{E}^{\mathrm{gv}}[g] = \mathcal{E}^{\mathrm{gv}}[g_{\mathrm{gv}}] \end{split}$$

Notice that this also shows that the shape of the minimizer is now close to a profile different from the Thomas-Fermi one of before

An essential tool in [CPRY12] was proving the approximation of the energy in terms of a Giant Vortex energy; assuming $\Omega_0 \gg 1$

$$\begin{split} \mathcal{E}_{\Omega}^{\mathrm{GP}} &= \frac{\mathcal{E}^{\mathrm{gv}}}{\varepsilon^4} + \mathcal{O}\left(|\log\varepsilon|^{\frac{9}{2}}\right) \\ \mathcal{E}^{\mathrm{gv}}[g] &= \int_{\mathbb{R}} \mathrm{dy}\left\{\frac{1}{2}\left|\nabla g\right| + \frac{1}{2}\Omega_0^2(s+2)\mathrm{y}^2g^2 + \frac{1}{2\pi}g^4\right\} \\ \mathcal{E}^{\mathrm{gv}} &= \inf_{\|g\|_2^2} \mathcal{E}^{\mathrm{gv}}[g] = \mathcal{E}^{\mathrm{gv}}[g_{\mathrm{gv}}] \end{split}$$

Notice that this also shows that the shape of the minimizer is now close to a profile different from the Thomas-Fermi one of before

In particular the minimizer $g_{\rm gv}$ is strictly positive in the annulus $\mathcal{A}_{\rm bulk}$ where $\psi_{\Omega}^{\rm GP}$ is concentrated, so we can define u such that $\psi_{\Omega}^{\rm GP}(x) = \frac{1}{\sqrt{2\pi}\varepsilon} g_{\rm gv}(x) u(x) e^{i\lfloor\Omega\rfloor\theta}$, and in this case

$$\frac{E^{\mathrm{gv}}}{\varepsilon^4} \geq E_{\Omega}^{\mathrm{GP}} \geq \frac{E^{\mathrm{gv}}}{\varepsilon^4} + \frac{1}{2\pi\varepsilon^2} \int_{\mathcal{A}_{\mathrm{bulk}}} \mathrm{d}\mathbf{x} \ K(x) \, |\nabla u|^2 + \mathcal{O}\left(|\log\varepsilon|^{\frac{9}{2}}\right)$$

and the lower bound of this estimate reduces to estimate the positivity of the cost function; using the fact that for Ω_0 large enough the profile of $g_{\rm gv}$ is basically gaussian, they were able to prove

$$K(x) \geq C\left(1 + \mathcal{O}\left(\Omega_0^{-\frac{1}{4}}\right)\right)g_{\mathrm{gv}}^2(x)$$

In [CPRY12] no explicit value for the transition speed was given, due to the crucial hypotheses $\Omega_0\gg 1$

In particular the minimizer $g_{\rm gv}$ is strictly positive in the annulus $\mathcal{A}_{\rm bulk}$ where $\psi_{\Omega}^{\rm GP}$ is concentrated, so we can define u such that $\psi_{\Omega}^{\rm GP}(x) = \frac{1}{\sqrt{2\pi}\varepsilon} g_{\rm gv}(x) u(x) e^{i\lfloor\Omega\rfloor\theta}$, and in this case

$$\frac{E^{\mathrm{gv}}}{\varepsilon^4} \geq E_{\Omega}^{\mathrm{GP}} \geq \frac{E^{\mathrm{gv}}}{\varepsilon^4} + \frac{1}{2\pi\varepsilon^2} \int_{\mathcal{A}_{\mathrm{bulk}}} \mathrm{d}\mathbf{x} \ K(x) \, |\nabla u|^2 + \mathcal{O}\left(|\log\varepsilon|^{\frac{9}{2}}\right)$$

and the lower bound of this estimate reduces to estimate the positivity of the cost function; using the fact that for Ω_0 large enough the profile of $g_{\rm gv}$ is basically gaussian, they were able to prove

$$K(x) \ge C\left(1 + \mathcal{O}\left(\Omega_0^{-\frac{1}{4}}\right)\right) g_{gv}^2(x)$$

In [CPRY12] no explicit value for the transition speed was given, due to the crucial hypotheses $\Omega_0\gg 1$

In our work we decided to focus more on the exact form of K(x) to get a better description of the condition to have a lower bound

$$E_{\Omega}^{\text{GP}} = \frac{E^{\text{gv}}}{\varepsilon^4} + \frac{1}{2\pi\varepsilon^2} \mathcal{E}[u] + \mathcal{O}(\varepsilon^{\infty})$$

$$\mathcal{E}[u] := \int_{\mathcal{A}_{\text{bulk}}} d\mathbf{x} \ g_{\text{gv}}^2 \left\{ \frac{1}{2} |\nabla u|^2 + \mathbf{a} \cdot \mathbf{j}[u] + \frac{1}{2\pi\varepsilon^4} g_{\text{gv}}^2 \left(1 - |u|^2 \right)^2 \right\}$$

$$\mathcal{E}[u] \ge \int_{\mathcal{A}_{\text{bulk}}} d\mathbf{x} \ K(x) |\nabla u|^2 + \frac{1}{2\pi\varepsilon^4} g_{\text{gv}}^4 \left(1 - |u|^2 \right)^2$$

$$K(x) := \frac{1}{2} g_{\text{gv}}^2 - F(x)$$

In our work we decided to focus more on the exact form of K(x) to get a better description of the condition to have a lower bound Using again a splitting of the energy one can get

$$E_{\Omega}^{\text{GP}} = \frac{E^{\text{gv}}}{\varepsilon^4} + \frac{1}{2\pi\varepsilon^2} \mathcal{E}[u] + \mathcal{O}(\varepsilon^{\infty})$$

$$\mathcal{E}[u] := \int_{\mathcal{A}_{\text{bulk}}} d\mathbf{x} \ g_{\text{gv}}^2 \left\{ \frac{1}{2} |\nabla u|^2 + \mathbf{a} \cdot \mathbf{j}[u] + \frac{1}{2\pi\varepsilon^4} g_{\text{gv}}^2 \left(1 - |u|^2 \right)^2 \right\}$$

$$\mathcal{E}[u] \ge \int_{\mathcal{A}_{\text{bulk}}} d\mathbf{x} \ K(x) |\nabla u|^2 + \frac{1}{2\pi\varepsilon^4} g_{\text{gv}}^4 \left(1 - |u|^2 \right)^2$$

$$K(x) := \frac{1}{2} g_{\text{gv}}^2 - F(x)$$

In our work we decided to focus more on the exact form of K(x) to get a better description of the condition to have a lower bound

Using again a splitting of the energy one can get

$$\begin{split} \mathcal{E}_{\Omega}^{\mathrm{GP}} &= \frac{\mathcal{E}^{\mathrm{gv}}}{\varepsilon^4} + \frac{1}{2\pi\varepsilon^2} \mathcal{E}[u] + \mathcal{O}\left(\varepsilon^{\infty}\right) \\ \mathcal{E}[u] &:= \int_{\mathcal{A}_{\mathrm{bulk}}} d\mathbf{x} \ g_{\mathrm{gv}}^2 \left\{ \frac{1}{2} \left| \nabla u \right|^2 + \left[\mathbf{a} \cdot \mathbf{j}[u] \right] + \frac{1}{2\pi\varepsilon^4} g_{\mathrm{gv}}^2 \left(1 - |u|^2 \right)^2 \right\} \\ \mathbf{a}(x) &:= \left(\frac{\Omega + \beta_{\star}}{x} - \Omega x \right) \mathbf{e}_{\theta}, \ \mathbf{j}[u] := \mathrm{Im} \left(u^* \nabla u \right) \\ \mathcal{E}[u] &\geq \int_{\mathcal{A}_{\mathrm{bulk}}} d\mathbf{x} \ \mathcal{K}(x) \left| \nabla u \right|^2 + \frac{1}{2\pi\varepsilon^4} g_{\mathrm{gv}}^4 \left(1 - |u|^2 \right)^2 \\ \mathcal{K}(x) &:= \frac{1}{2} g_{\mathrm{gv}}^2 - \mathcal{F}(x) \end{split}$$

In our work we decided to focus more on the exact form of K(x) to get a better description of the condition to have a lower bound Using again a splitting of the energy one can get

$$\begin{split} \mathcal{E}_{\Omega}^{\mathrm{GP}} &= \frac{\mathcal{E}^{\mathrm{gv}}}{\varepsilon^4} + \frac{1}{2\pi\varepsilon^2} \mathcal{E}[u] + \mathcal{O}\left(\varepsilon^{\infty}\right) \\ \mathcal{E}[u] &\geq \int_{\mathcal{A}_{\mathrm{bulk}}} d\mathbf{x} \; \mathcal{K}(x) \left|\nabla u\right|^2 + \frac{1}{2\pi\varepsilon^4} g_{\mathrm{gv}}^4 \left(1 - \left|u\right|^2\right)^2 \\ \mathcal{K}(x) &:= \frac{1}{2} g_{\mathrm{gv}}^2 - \mathcal{F}(x) \end{split}$$

$$\begin{split} \mathcal{E}_{\Omega}^{\mathrm{GP}} &= \frac{\mathcal{E}^{\mathrm{gv}}}{\varepsilon^4} + \frac{1}{2\pi\varepsilon^2} \mathcal{E}[u] + \mathcal{O}\left(\varepsilon^{\infty}\right) \\ \mathcal{E}[u] &\geq \int_{\mathcal{A}_{\mathrm{bulk}}} d\mathbf{x} \; \mathcal{K}(x) \left|\nabla u\right|^2 + \frac{1}{2\pi\varepsilon^4} g_{\mathrm{gv}}^4 \left(1 - \left|u\right|^2\right)^2 \\ \mathcal{K}(x) &:= \frac{1}{2} g_{\mathrm{gv}}^2 - \mathcal{F}(x) \end{split}$$

Main Result

Critical velocity (Correggi, D, [CD15])

Let Ω_c be defined as the supremum of the solution of

$$\Omega_0 = \frac{4}{s+2} \left[\mu^{\rm gv} - \frac{1}{2\pi} g_{\rm gv}^2(0) \right]$$

where $\mu^{\rm gv}$ is defined through $-\frac{1}{2}g_{\rm gv}''+\frac{1}{2}\Omega_0^2(s+2){\rm y}^2g_{\rm gv}+\frac{1}{\pi}g_{\rm gv}^3=\mu^{\rm gv}g_{\rm gv};$ then if $\Omega_0\geq\Omega_{\rm c}$ then

$$E_{\Omega}^{\mathrm{GP}} = \frac{E^{\mathrm{gv}}}{\varepsilon^4} + \mathcal{O}(1)$$

- It is possible to prove that there is a solution to the equation that defines Ω_c by considering the limits for Ω_0 going both to 0 and to $+\infty$; we espect this solution to be unique

- It is possible to prove that there is a solution to the equation that defines Ω_c by considering the limits for Ω_0 going both to 0 and to $+\infty$: we espect this solution to be unique
- As in [CPRY12] the main consequence of this estimate is that $\psi_{\Omega}^{\mathrm{GP}}$ is strictly positive in A_{bulk} and therefore the condensate has no vortices in $\mathcal{A}_{\text{bulk}}$

- It is possible to prove that there is a solution to the equation that defines Ω_c by considering the limits for Ω_0 going both to 0 and to $+\infty$: we espect this solution to be unique
- As in [CPRY12] the main consequence of this estimate is that $\psi_{\Omega}^{\mathrm{GP}}$ is strictly positive in A_{bulk} and therefore the condensate has no vortices in $\mathcal{A}_{\text{bulk}}$
- Therefore while $\Omega_0 > \Omega_c$ there are no vortices in the annulus so the phase transition already happened and this means that $\Omega_{c_3} \leq \frac{\Omega_c}{c_4}$;

- It is possible to prove that there is a solution to the equation that defines Ω_c by considering the limits for Ω_0 going both to 0 and to $+\infty$; we espect this solution to be unique
- As in [CPRY12] the main consequence of this estimate is that $\psi_{\Omega}^{\mathrm{GP}}$ is strictly positive in A_{bulk} and therefore the condensate has no vortices in $\mathcal{A}_{\text{bulk}}$
- Therefore while $\Omega_0 > \Omega_c$ there are no vortices in the annulus so the phase transition already happened and this means that $\Omega_{c_3} \leq \frac{\Omega_c}{c_4}$;
- It is still an open problem to show that the value we just found is in fact the real critical speed for the condensate, that is that in fact $\Omega_{c_3} = \frac{\Omega_c}{\epsilon^4}$, and to prove this one should show that for any $\Omega < \frac{\Omega_c}{\epsilon^4}$ there are vortices inside the annulus

Thanks for the attention!

[AJR11] A. AFTALION, R.L. JERRARD, J. ROYO-LETELIER
Non-Existence of Vortices in the Small Density Region of a Condensate (2011)
[IM06] R. IGNAT, V. MILLOT
The Critical Velocity for Vortex Existence in a Two-dimensional Rotating
Bose-Einstein Condensate (2006)
Energy Expansion and Vortex Location for a Two Dimensional Rotating

Energy Expansion and Vortex Location for a Two Dimensional Rotating Bose-Einstein Condensate (2006)

[CY08] M. Correggi, J. Yngvason

Energy and Vorticity in Fast Rotating Bose-Einstein Condensates (2008)

[CPRY12] M. CORREGGI, F. PINSKER, N. ROUGERIE, J. YNGVASON

Critical Rotational Speeds for Superfluids in Homogeneous Traps (2012)

[FJS05] A.L. Fetter, N. Jackson, S. Stringari

Rapid Rotation of a Bose-Einstein Condensate in a Harmonic Plus Quartic Trap (2005)

[CD16] M. CORREGGI, D. DIMONTE

On the third Critical Speed for Rotating Bose-Einstein Condensates (2016)